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Jet events in particle detectors

• Example of a di-jet event observed at the LHC.
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Jet fragmentation picture
Single-particle inclusive distribution (e.g. in e+e− → hX)

Fh(x, s) =
∑

i

∫ 1

x

dz
z

Ci(z, αs(s))Dh
i (x/z, s)

s = q2, x = 2ph · q/q2 = 2Eh/Ecm

Fragmentation functions Dh
i evolve via DGLAP equations

M
∂

∂M
Dh

i (x,M) =
∑

j

∫ 1

x

dz
z

Pji(z, αs(M))Dh
i (x/z,M)

pQCD 
evolution
of the jet

Jet fragments
into hadrons

• At some scale
M2 = Q2

0 ∼ 1− 3 GeV2, pQCD
is not valid anymore.

FL Jet Fragmentation From Two Dimensional Field Theory



Jet fragmentation picture
Single-particle inclusive distribution (e.g. in e+e− → hX)

Fh(x, s) =
∑

i

∫ 1

x

dz
z

Ci(z, αs(s))Dh
i (x/z, s)

s = q2, x = 2ph · q/q2 = 2Eh/Ecm

Fragmentation functions Dh
i evolve via DGLAP equations

M
∂

∂M
Dh

i (x,M) =
∑

j

∫ 1

x

dz
z

Pji(z, αs(M))Dh
i (x/z,M)

pQCD 
evolution
of the jet

Jet fragments
into hadrons

• At some scale
M2 = Q2

0 ∼ 1− 3 GeV2, pQCD
is not valid anymore.

FL Jet Fragmentation From Two Dimensional Field Theory



Jet fragmentation picture
Single-particle inclusive distribution (e.g. in e+e− → hX)

Fh(x, s) =
∑

i

∫ 1

x

dz
z

Ci(z, αs(s))Dh
i (x/z, s)

s = q2, x = 2ph · q/q2 = 2Eh/Ecm

Fragmentation functions Dh
i evolve via DGLAP equations

M
∂

∂M
Dh

i (x,M) =
∑

j

∫ 1

x

dz
z

Pji(z, αs(M))Dh
i (x/z,M)

pQCD 
evolution
of the jet

Jet fragments
into hadrons

• At some scale
M2 = Q2

0 ∼ 1− 3 GeV2, pQCD
is not valid anymore.

FL Jet Fragmentation From Two Dimensional Field Theory



Jet hadronization models

• Some Ideas
• Local parton hadron duality - flow of energy-momentum and

flavor quantum numbers of hadrons should follow those of
partons.

• Universal low-scale - Assume that one can use αs(q2) even
below q2 = Q2

0 ∼ 1 GeV2 to calculate Feynman diagrams.
• Models

• Cluster model - qq̄ singlets have lower masses and form
clusters, which in turn decay into pairs of hadrons.

• String model - is based on the relativistic string stretched
between initial quarks.
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Dimensional reduction from QCD4 to (1+1) field theory

• One of the first examples of using Schwinger Model (QED2) for
describing jets, is given in [Casher, Kogut, Susskind, 1974].

Examples of dimensional reduction in high-energy scattering in QCD

• A very interesting example is given in [Lipatov, 1988], where the
author calculates quark-quark scattering amplitude to fifth order
in the coupling constant and shows that scattering amplitude can
be obtained from an exactly solvable two dimensional field theory.

• In [Jackiw, Kabat, Ortiz, 1991], it is shown that high energy
scattering of massless charged particles is described by a two
dimensional field theory. The S-matrix of this theory gives the
usual eikonal approximation.

• In [Verlinde, Verlinde, 1993], for s >> t, (3+1) dimensional
Yang-Mills theory interactions, to leading order, can be described
by a two dimensional sigma model on the transverse plane.

• Finally, an intuitive method to dimensional reduction was given in
[Wong, 2009].
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The Schwinger Model
The Schwinger model is QED in 1 + 1 dimensions

Lagrangian

L = −1
4

FµνFµν + ψ̄(iγµ∂µ − gγµAµ − mq)ψ

Dimensional analysis:

[A] = 0, [φ] = 0, [ψ] = 1/2⇒ [g] = 1

Interesting properties
• Dynamical Higgs Mechanism - Gauge field becomes massive via

a Higgs mechanism induced by fermions in the theory.
• No free asymptotic charges exist in the theory - Charge

screening.
• Linear confinement is also easily seen in the semi-classical

treatment of the massive case.
• θ vacuum, similar to QCD4.
• Using bosonization, it is shown that conserved currents have

topological origin.
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The θ parameter

• In 1 + 1 dimensions the electric field can be calculated from
[Coleman, 1974]

F01 = g∂−1
1 j0 + F

• j0(x) is the charge density and F is a constant electric field.
• the constant electric field is allowed in 1 + 1 dimensions

+ -

L

F + eF F

- +F - eF F

• Energy difference

∆E =
1
2

∫
dx[F2

01 − F2] =
1
2

L[(F±g)2−F2]

• Pair creation favorable for |F| > 1
2 g,

until |F| ≤ 1
2 g

• Physics is periodic in F, with period g!

Theta angle

θ =
2πF

g
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Abelian Bosonization [Review by Y. Frishman, J. Sonnenschein, 2010]

• In one spatial dimension there is no rotation, therefore no angular
momentum.

• This prompts somehow to equivalence between scalars and
higher tensorial fields.

• Bosons and fermions different however, because of statistics.
• An explicit construction of a fermionic field out of a boson was

given by [Mandelstam, 1975]

ψL(x, t) =

√
cµ
2π

: exp
(
−i
√
π

(∫ x

−∞
dξ[π(ξ) + φ(x)]

))
:

ψR(x, t) =

√
cµ
2π

: exp
(
−i
√
π

(∫ x

−∞
dξ[π(ξ)− φ(x)]

))
:

π(x) ≡ φ̇(x)

• Using this relation between bosonic and fermionic fields, it is
possible to verify the correct (anti)commutation relations.
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Abelian Bosonization Rules

Bosonization in the "complex" formulation.

• In Minkowski space-time we get

Maxwell current

jµ(x) =: ψ(x)γµψ(x) := − 1√
π
εµν∂νφ
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Bosonized QED2

Massive QED2

L = −1
4

FµνFµν + ψ̄(iγµ∂µ − gγµAµ − mq)ψ

is equivalent to

Scalar theory

L = −1
4

FµνFµν +
1
2
∂µφ∂

µφ+
g√
π
εµν∂νφAµ + M2 cos(2

√
πφ)

Through correspondence

Jµ(x) = ψ̄γµψ = − 1√
π
εµν∂νφ(x)

M2 = const.mq
g√
π
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Confinement versus screening
The string tension for a static case can be calculated, by adding an external
source Jµext, which enters in the Lagrangian as

−JµextAµ

If we put an external pair with charges ±g, separated by 2L

J0
ext(x) = δ(z + L)− δ(z− L)

It can be shown that

Potential

V(L) = 2π2M22L +
g
√
π

2

(
1− e−

g√
π

2L
)

M ∝ mqg

• For mq = 0, we get screening.
• Massive case, mq 6= 0, shows linear confinement, with string

tension σ = 2π2M2.
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Conserved currents
In massless QED (mq = 0) two currents are conserved classically

Vector current

JµV = ψ̄γµψ

Axial Current

JµA = ψ̄γµγ5ψ

∂µJµV,A = 0

We saw before that
JµV = − 1√

π
εµν∂νφ

In 1 + 1 dimensions γµγ5 = εµνγν , from where

JµA =
1√
π
∂µφ
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Useful relation

EOM of the gauge field, together with the bosonization formula for the vector
current give us

∂µFµν = gJν = − g√
π
ενα∂αφ⇒ ∂1

(
F10 +

g√
π
φ

)
= 0

If we require functions to vanish at z→ ±∞, we get

F10 = F01 = − g√
π
φ

We will use this relation later to derive the anomaly equation.
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Effective Lagrangian for φ

In 1 + 1 dimensions field strength has only one component F01 ≡ F.
Bosonized Lagrangian can be written (mq = 0)

L = −1
4

FµνFµν +
1
2
∂µφ∂

µφ+
g√
π
εµν∂νφAµ

=
1
2

F2 +
1
2
∂µφ∂

µφ− g√
π
εµν∂νAµ

=
1
2

F2 +
1
2
∂µφ∂

µφ+
g√
π
φF

We can integrate F (e.g. choose the gauge A0 = 0, Jacobian of∫
DA1 →

∫
DF01 doesn’t depend on F) to get

Effective Lagrangian

Leff =
1
2
∂µφ∂

µφ− 1
2

g2

π
φ2

This is just a free massive scalar field, with mass m = g√
π

.
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Anomaly equation

Equation of motion for φ is just the Klein-Gordon equation

(� +
g2

π
)φ = 0

Using bosonization relations

∂µJµA = ∂µ

(
1√
π
∂µφ

)
=

1√
π
�φ

Using EOM for φ and relation between F01 and φ, we get

Anomaly equation

∂µJµA =
g
π

F01 =
g

2π
εµνFµν

This is the two dimensional version of the well known anomaly equation in
QED (Adler-Bell-Jackiw anomaly).
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Axial charge

F01 is just the electric field E. Therefore

∂µJµA =
g
π

E

If we have a background electric field E 6= 0 then, using Gauss’ theorem∫
dzdt∂µ JµA = QA(t =∞)− QA(t = −∞) = NR − NL =

g
π

∫
dzdt E(z, t)

where
QA =

∫
dzJ0

A

In other words

Axial charge

NR − NL =
g
π

∫
dzdt E(z, t)
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Adding a general external source

Consider a general external source Jµext(x) = jµext(z, t). In bosonized form can
be written as

Jµext(x) = − 1√
π
εµν∂νφext(x)

In the same way as before, we get the effective Lagrangian

Leff =
1
2

(∂µφ)2 − 1
2

g2

π
(φ+ φext)

2

Which gives

Equation of motion

(� + m2)φ(x) = −m2φext(x)

• Corresponds to a massive scalar field, coupled to a classical
source.

• Coherent particle creation.
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Constructing the external current
In general, we can construct a conserved current from

jµ(x) =

∫
dτ

dyµ(τ)

dτ
δ(2)(x− y(τ))

For a particle moving along the worldline yµ(τ)

yΜHΤL

This construction gives a conserved current.
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An example of particle creation

We consider the source [Casher, Kogut, Susskind, 1974]

J0
ext(x) = δ(z− t)θ(z)− δ(z + t)θ(−z)

- +

Using bosonization relations we have

φext(x) = −θ(t − z)θ(t + z)

We therefore have to solve

(� + m2)φ = m2θ(t − z)θ(t + z)

The solution to the equation of motion is

φ(x) = θ(t + z)θ(t − z)(1− J0(m
√

x2))

where x2 = t2 − z2.
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An example of particle creation (cont’d)

-40 -20 0 20 40
z

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ΦHt=50,zL

- +-+ -+ -+ -+

(Anti-)Kinks correpond to (anti-)fermions.
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Particle creation by a general source

In general, we can write
(� + m2)φ = f (x)

General solution of EOM:

φ(x) = φ0(x) + i
∫

d2y∆R(x− y)f (y)

where
(� + m2)∆R(x) = −iδ(2)(x)

Use
φ0(x) =

∫
dp
2π

1
(2Ep)1/2 [ape−ip·x + a†p eip·x]

and
∆R(x− y) =

∫
dp

2π2Ep
(eip·(x−y) − e−ip·(x−y))θ(x0 − y0)
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Particle creation by a general source (cont’d)

φ(x) =

∫
dp

2π(2Ep)1/2

[(
ap −

i
(2Ep)1/2 f̃ ∗(p)

)
e−ipx +

(
a†p +

i
(2Ep)1/2 f̃ (p)

)
eipx
]

where
f̃ (p) =

∫
d2xeip·xf (x)

Since

H =

∫
dp
2π

Ep

[
a†p ap +

1
2

[ap, a†p ]

]
⇒ 〈0|H|0〉 =

∫
dp
2π

Ep
|̃f (p)|2

2Ep

Therefore

Hadron spectrum

dN
dp
≡
〈

0|a†p ap|0
〉

=
|̃f (p)|2

2Ep

|0〉 is the free theory vacuum
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Particle creation by a general source (cont’d)
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Particle creation by a general source (cont’d)

More general charge density - quarks move with velocity v

j0
ext(x) = δ(z− vt)θ(z)− δ(z + vt)θ(−z)

z

t

Velocity is calculated from

v =
pq

Eq
=

√
s/2√

s/4 + Q2
0

We can now calculate

dN
dp

= 2π
v2m4

Ep(E2
p − v2p2)2

We fix Q0 by comparing our result to experimental data!

FL Jet Fragmentation From Two Dimensional Field Theory



Particle creation by a general source (cont’d)

More general charge density - quarks move with velocity v

j0
ext(x) = δ(z− vt)θ(z)− δ(z + vt)θ(−z)

z

t

Velocity is calculated from

v =
pq

Eq
=

√
s/2√

s/4 + Q2
0

We can now calculate

dN
dp

= 2π
v2m4

Ep(E2
p − v2p2)2

We fix Q0 by comparing our result to experimental data!

FL Jet Fragmentation From Two Dimensional Field Theory



Jet variables

In pQCD, jets usually are described by rapidity y and variable z, defined as

y =
1
2

ln
Ep + p
Ep − p

= ln
Ep + p

m

z =
p
E

=
2p√

s
p = m sinh y

Ep = m cosh y

where p, Ep and m are momentum, energy and mass of hadron. E =
√

s/2 is
the jet energy.
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Rapidity distribution
In bosonized QED2, we calculated dN/dp. We now change variables to y and
we get

dN
dy

= 2π
v2

(cosh2 y− v2 sinh2 y)2

1 2 3 4
y

1

2

3

4

5

dN�dy

Comparison to experimental data [Aihara (TPC/Two Gamma Collaboration), 1988], for√
s = 29 GeV

• Q0 is fixed by above fit. We get Q0 ≈ 1.8 GeV.
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Fragmentation functions
Fragmentation function for e+e− annihilation

0.0 0.2 0.4 0.6 0.8 1.0
z

0.1

1

10

100

dN�dz

Charged particle distribution for
√

s = 201.7 GeV,
[Abbiendi (OPAL Collaboration), 2003].

• Reasonable agreement with the data for z > 0.1.
• By fitting to data at different center of mass energies m ' 0.6 GeV.
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Jets in Medium
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Fragmentation scaling [Roland (CMS Collaboration), 2011]

Jet Fragmentation Function, PbPb≈pp

• Fragmentation functions are unmodified by the nuclear medium
in heavy ion collisions.
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Space-time representation

We treat scattering in medium in the following picture

a1 a1 a2 a2 aN aN

f1

f2

fN

The medium is represented by
static sources at points zi = vti

Hadron spectrum is calculated from

dNresc

dp
=

1
2Ep
|̃f (p)|2 =

1
2Ep

(
|̃f1(p)|2 +

∑
|̃f2(p)|2 + |̃f3(p)|2

)
Contours live in different color sectors - large N picture, therefore there are no
interference terms.
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Fragmentation scaling (cont’d)

Counter intuitive - more scatterings give less emission!

1 2 3 4 5
Ξ

0.5

1.0

1.5

2.0

2.5

3.0

HdNmed�dΞL�HdNvac�dΞL

The length of the medium is fixed at 4 fm, the jet energy is Ejet = 120 GeV. Solid line:
the first scattering occurs at t1 = 1 fm (assumed thermalization time), and subsequent

scatterings occur with time spacing of ∆t = 1/m = 0.3 fm. Dashed line: double
scattering with t1 = 2 fm and t2 = 4 fm (∆t = 2 fm). Dot-dashed line: four scatterings

with ∆t = 1 fm, t1 = 1 fm. Open (filled) circles are for the leading (subleading) jet.
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LPM Effect in Perturbation Theory
[Review by Baier, Schiff, Zakharov, 2000]

Define formation time
tform '

ω

k2
⊥

ω and k⊥ are gluon energy and transerver momentum, ω >> k⊥ and k⊥ ' µ.
And mean free path

λ =
1
ρσ

ρ is medium density, σ is the total scattering cross section.

• When tform >> λ many scattering centers (Ncoh) act as one

Ncoh '
√

ω

λµ2 ≡
√

ω

ELPM

• Energy spectrum can be estimated

ω
dI

dωdz
' αs

π
Nc

√
µ2

λ

1
ω

Which is suppressed by a factor
√

ELPM/ω ≡
√
λµ2/ω compared

to the Bethe-Heitler regime.
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Non Perturbative LPM

From the picture shown earlier

f̃1(p) =
−m2v

√
π

Ep − vp

[
2

Ep + vp
− ei(Ep−vp)t1

Ep

]
f̃2(p) =

m2v
√
π

Ep(Ep − vp)

[
ei(Ep−vp)t2 − ei(Ep−vp)t1

]
f̃3(p) =

−m2v
√
π

Ep(Ep − vp)
ei(Ep−vp)t2

Contribution from f̃2(p) is suppressed for t2 − t1 ≡ ∆t (mean free path) small.
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Energy Loss
Scaling is non trivial. We consider energy loss

δE =

∫ Ejet

mh

dEhEh

(
dNmed

dEh
− dNvac

dEh

)

50 60 70 80 90 100 110 120
Ejet

10

20

30

40
∆E

Energy loss is mostly due to emission of soft particles.
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Summary

• QED2 captures some of the features of QCD4.
• Exact solution of this theory allows us to get a better

understanding of non-perturbative and topological effects.
• May be a good starting point to study topological effects in high

energy QCD.
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